

Secure Code

Secure Coding Practices Checklist
• Input Validation
• Output Encoding
• Authentication and Password Management
• Session Management
• Access Control
• Cryptographic Practices
• Error Handing and Logging
• Data Protection
• Communication Security
• System Configuration
• Database Security
• File Management
• Memory Management
• General Coding Practices

https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide

https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide

Input Validation

Conduct all data validation on a trusted system

Input Validation

Identify all data sources and classify them into
 trusted and untrusted. Validate all data from untrusted sources

Input Validation

There should be a centralized input validation routine for
 the application

Centralized
 input validation

Input Validation

Specify proper character sets, such as UTF-8,for all sources
 of input

Input Validation

Encode data to a common character set before validating

data

data

data

data

Data

Input Validation

All validation failures should result in input rejection

Data

Input Validation

Determine if the system supports UTF-8 extended character sets
 and if so, validate after UTF-8 decoding is completed

UTF 8
input output

Process

Input Validation

Validate all client provided data before processing, including all
parameters, URLs and HTTP header content

HTTP Header

JAVA Flash Cookie

embedded code

Input Validation

Verify that header values in both requests and responses contain
 only ASCII characters

Input Validation

Validate data from redirects

data

Input Validation

Validate for expected data types

character

integer Float

Double

Input Validation

Validate data range ,lenght

Input Validation

Validate all input against a "white" list of allowed characters

Input Validation

If any potentially hazardous characters must be allowed as input,
be sure that you implement additional controls like output
encoding, secure task specific APIs and accounting for the
utilization of that data throughout the application .
Examples of common hazardous characters include:
< > " ' % () & + \ \' \"

‘ &

Input Validation

If your standard validation routine cannot address the following
inputs, then they should be checked discretely
o Check for null bytes (%00)
o Check for new line characters (%0d, %0a, \r, \n)
o Check for “dot-dot-slash" (../ or ..\) path alterations characters.

Secure Coding Practices Checklist
• Input Validation
• Output Encoding
• Authentication and Password Management
• Session Management
• Access Control
• Cryptographic Practices
• Error Handing and Logging
• Data Protection
• Communication Security
• System Configuration
• Database Security
• File Management
• Memory Management
• General Coding Practices

Output Encoding
• Conduct all encoding on a trusted system
• Utilize a standard
• Contextually output encode all data returned to the client that
originated outside the application's trust boundary.
• Encode all characters unless they are known to be safe for
 the intended interpreter
• Contextually sanitize all output of un-trusted data to queries
for SQL, XML, and LDAP
• Sanitize all output of un-trusted data to operating system commands

Secure Coding Practices Checklist
• Input Validation
• Output Encoding
• Authentication and Password Management
• Session Management
• Access Control
• Cryptographic Practices
• Error Handing and Logging
• Data Protection
• Communication Security
• System Configuration
• Database Security
• File Management
• Memory Management
• General Coding Practices

Authentication and Password Management

• Require authentication for all pages and resources, except those specifically
 intended to be public
• All authentication controls must be enforced on a trusted system
• Establish and utilize standard, tested, authentication services whenever possible
• Use a centralized implementation for all authentication controls, including
 libraries that call external authentication services
• Segregate authentication logic from the resource being requested and use
 redirection to and from the centralized authentication control
• All authentication controls should fail securely
• All administrative and account management functions must be at least as
 secure as the primary authentication mechanism
• If your application manages a credential store, it should ensure that only
 cryptographically strong one-way salted hashes of passwords are stored
 and that the table/file that stores the passwords and keys is write-able only
 by the application. (Do not use the MD5 algorithm if it can be avoided)
• Password hashing must be implemented on a trusted system (e.g., The server).

Authentication and Password Management

• Validate the authentication data only on completion of all data input, especially

 for sequential authentication implementations
• Authentication failure responses should not indicate which part of the
 authentication data was incorrect. For example, instead of "Invalid username"
 or "Invalid password", just use "Invalid username and/or password" for both.
• Utilize authentication for connections to external systems that involve sensitive
 information or functions
• Authentication credentials for accessing services external to the application
 should be encrypted and stored in a protected location on a trusted system

Authentication and Password Management
• Use only HTTP POST requests to transmit authentication credentials
• Only send non-temporary passwords over an encrypted connection or as
 encrypted data, such as in an encrypted email. Temporary passwords
 associated with email resets may be an exception
• Enforce password complexity requirements established by policy or regulation.
• Enforce password length requirements established by policy or regulation.
• Password entry should be obscured on the user's screen.
• Enforce account disabling after an established number of invalid login attempts
• Password reset and changing operations require the same level of controls as
 account creation and authentication.
• Password reset questions should support sufficiently random answers.
• If using email based resets, only send email to a pre-registered address
 with a temporary link/password
• Temporary passwords and links should have a short expiration time
• Enforce the changing of temporary passwords on the next use

Secure Coding Practices Checklist
• Input Validation
• Output Encoding
• Authentication and Password Management
• Session Management
• Access Control
• Cryptographic Practices
• Error Handing and Logging
• Data Protection
• Communication Security
• System Configuration
• Database Security
• File Management
• Memory Management
• General Coding Practices

Error Handing and Logging
• Do not disclose sensitive information in error responses, including system
 details, session identifiers or account information
• Use error handlers that do not display debugging or stack trace information
• Implement generic error messages and use custom error pages
• The application should handle application errors and not rely on the
 server configuration
• Properly free allocated memory when error conditions occur
• Error handling logic associated with security controls should deny access
 by default
• All logging controls should be implemented on a trusted system
• Logging controls should support both success and failure of specified
 security events
• Ensure logs contain important log event data
• Ensure log entries that include un-trusted data will not execute as code in the
 intended log viewing interface or software
• Restrict access to logs to only authorized individuals

Error Handing and Logging
• Utilize a master routine for all logging operations
• Do not store sensitive information in logs, including unnecessary system details,
 session identifiers or passwords
• Ensure that a mechanism exists to conduct log analysis
• Log all input validation failures
• Log all authentication attempts, especially failures
• Log all access control failures
• Log all apparent tampering events, including unexpected changes to state data
• Log attempts to connect with invalid or expired session tokens
• Log all system exceptions
• Log all administrative functions, including changes to the security configuration
 settings
• Log all backend TLS connection failures
• Log cryptographic module failures
• Use a cryptographic hash function to validate log entry integrity

Secure Coding Practices Checklist
• Input Validation
• Output Encoding
• Authentication and Password Management
• Session Management
• Access Control
• Cryptographic Practices
• Error Handing and Logging
• Data Protection
• Communication Security
• System Configuration
• Database Security
• File Management
• Memory Management
• General Coding Practices

General Coding Practices
• Use tested and approved managed code rather than creating new unmanaged
 code for common tasks
• Utilize task specific built-in APIs to conduct operating system tasks. Do not
 allow the application to issue commands directly to the Operating System,
 especially through the use of application initiated command shells
• Use checksums or hashes to verify the integrity of interpreted code, libraries,
 executables, and configuration files
• Utilize locking to prevent multiple simultaneous requests or use a
 synchronization mechanism to prevent race conditions
• Protect shared variables and resources from inappropriate concurrent access
• Explicitly initialize all your variables and other data stores, either during
 declaration or just before the first usage
• In cases where the application must run with elevated privileges, raise
 privileges as late as possible, and drop them as soon as possible
• Avoid calculation errors by understanding your programming language's
 underlying representation and how it interacts with numeric calculation.

General Coding Practices
• Do not pass user supplied data to any dynamic execution function
• Restrict users from generating new code or altering existing code
• Review all secondary applications, third party code and libraries to determine
 business necessity and validate safe functionality, as these can introduce
 new vulnerabilities
• Implement safe updating. If the application will utilize automatic updates,
 then use cryptographic signatures for your code and ensure your download
 clients verify those signatures. Use encrypted channels to transfer the code
 from the host server

Secure Coding Practices Checklist
• Input Validation
• Output Encoding
• Authentication and Password Management
• Session Management
• Access Control
• Cryptographic Practices
• Error Handing and Logging
• Data Protection
• Communication Security
• System Configuration
• Database Security
• File Management
• Memory Management
• General Coding Practices

Name พงศ์ระพ ี นาคมณ ี [Information Security Engineer]
e-mail : pongrapee@ega.or.th tel. : 02-612-6000(4303)

mailto:Pongrapee@ega.or.th

